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Invasive fungal infections are a growing
threat to human health.

Secreted effector proteins are a ubiqui-
tous strategy used by diverse microbial
pathogens to manipulate host biology
and enable pathogen replication.

Recent work has revealed secreted pro-
tein effectors produced by human fungal
pathogens.

Secreted fungal effectors target apopto-
sis, myeloid cell polarization, Toll-like re-
Invasive fungal infections pose a major threat to human health. Bacterial and
protozoan pathogens secrete protein effectors that overcome innate immune
barriers to promote microbial colonization, yet few such molecules have been
identified in human fungal pathogens. Recent studies have begun to reveal
these long-sought effectors and have illuminated how they subvert key cellular
pathways, including apoptosis, myeloid cell polarization, Toll-like receptor sig-
naling, and phagosome action. Thus, despite lacking the specialized secretion
systems of bacteria and parasites, it is increasingly clear that fungi indepen-
dently evolved effectors targeting pathways often subverted by other classes
of pathogens. These findings demonstrate the remarkable power of convergent
evolution to enable diverse microbes to infect humans while also setting the
stage for detailed dissection of fungal disease mechanisms.
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fectors that subvert many host pathways
targeted by highly host-adapted bacteria
and parasites.
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Secreted effectors overcome host barriers to microbial colonization
Invasive fungal infections cause 1.5 million deaths each year, with effective treatment challenged
by poor diagnostics and limited therapeutic options [1,2]. Such infections are an escalating
biomedical concern as susceptible immunocompromised patient populations grow, drug-resistant
isolates emerge, and environmental fungi adapt to a warming global climate that selects for tolerance
to mammalian body temperature [1,3,4]. Improving therapies requires a molecular understanding of
fungal pathogenesis, yet human fungal pathogens remain severely understudied relative to bacteria
and viruses.

Evading or suppressing host immunity is critical for pathogenicity, and pathogens often accomplish
these goals using secreted effector proteins (see Glossary) that neutralize host blocks to infec-
tion. Bacterial effectors are often injected into the host cytosol via molecular needles corresponding
to one of several specialized secretion systems (e.g., types III, IV, and VI secretion systems) [5].
Among numerous functions, effectors can modulate host membrane trafficking to construct an
intraphagosomal niche (e.g., by preventing fusion with the lysosome) and co-opt host ubiquitin sig-
naling to promote bacterial survival (e.g., by suppressing antibacterial immune defenses) [6–8]. In
the Apicomplexa, a phylum of intracellular parasitic protozoa that includes Toxoplasma gondii
and the malaria parasites Plasmodium spp., protein effectors traffic through the endomembrane
system and are housed within secretory organelles that release them at precise timepoints during
infection [9,10]. T. gondii effector functions include arrest of the host cell cycle and suppression
of antimicrobial pathways such as interferon-γ [10], whereas most known Plasmodium effec-
tors remodel the host erythrocyte, such as by increasing cell rigidity to promote adherence
to the microvasculature and avoid splenic clearance [9]. Plant fungal pathogens secrete effec-
tors that are taken up by host cells through poorly understood mechanisms, and these proteins
have critical host-modulatory functions that include degradation of the plant cell wall,
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Glossary
Commensal: a microbe that lives in
association with a host without causing
significant harm or benefit.
Conidia: nonmotile, asexual spores
produced by some fungi.
Dimorphic fungus: a fungus that can
exist as either a filamentous mold or a
single-celled yeast depending on
environmental conditions.
Effector protein: a protein secreted by
a pathogen or commensal tomanipulate
host functions.
Exaptation: an organismal
characteristic with a use that either (i) is
different from that which was originally
shaped by natural selection or (ii) natural
selection had not previously acted upon.
Hypha: a multicellular fungal
morphotype characterized by long,
branching filaments that grow from their
tips.
Pathogen-associated molecular
patterns (PAMPs): conserved
microbial molecular structures
recognized by host pattern-recognition
receptors to initiate innate immune
responses.
Phosphoinositide: a phos-
phatidylinositol lipid phosphorylated at
one or more of three head group
positions to regulate membrane
trafficking, signaling, and other cellular
processes.
Rab GTPases: a family of small GTP-
binding proteins that regulate
intracellular membrane trafficking.
Saprophyte: an environmental
organism that obtains nutrients by
decomposing dead organic matter.
Spore: a single-celled, sexually or
asexually produced fungal reproductive
structure that is released into the
environment and germinates upon
exposure to suitable conditions.
Type 1 immune response: an
immune polarization state characterized
by activation of T-helper 1 (Th1) cells and
production of proinflammatory
cytokines, typically involved in defense
against intracellular pathogens.
Type 2 immune response: an
immune polarization state characterized
by activation of T-helper 2 (Th2) cells and
production of anti-inflammatory
cytokines, typically associated with
allergic immunity and defense against
helminth parasites.
Yeast: a single-celled fungal
morphotype that reproduces asexually
by budding or fission.
manipulation of immune-activating phytohormones, and sequestration of the pathogen-
associated molecular pattern (PAMP) chitin [11–14].

In human fungal pathogens, secreted polysaccharides from Cryptococcus neoformans and
Aspergillus fumigatus have well-established, albeit mechanistically poorly understood, immuno-
modulatory functions [15]. The secreted dihydroxynaphthalene melanin (DHN-melanin) pigment
from A. fumigatus also plays important roles in pathogenesis [16]. In contrast to bacteria and
parasites, few protein effectors with clear host-acting, immunomodulatory functions are known,
despite the identification of several secreted fungal proteins with important roles in pathogenesis
[17]. Now, due to advances in fungal genetics, genomics, and proteomics, novel immunomodu-
latory effector proteins have recently been described in four different human fungal pathogens
[18–21]. Here, we highlight the methodologies that led to the discovery of these effectors, the
key experiments elucidating their functions, and the striking convergence of fungal effector
functions with those of bacterial and protozoal effectors.

Induction of macrophage apoptosis by Histoplasma capsulatum Cbp1
H. capsulatum is a thermally dimorphic fungus that causes respiratory disease in immunocom-
petent individuals and at least 100 000 annual cases of life-threatening disseminated disease in
immunocompromised patients [2]. HIV/AIDS-associated histoplasmosis is a neglected disease
that frequently goes undiagnosed or misdiagnosed as tuberculosis, resulting in treatment delays
andmortality rates ranging from 10% to 60% [22,23]. Human infection withH. capsulatum begins
following inhalation of environmental spores that undergo a programmed developmental switch
to a pathogenic yeast form upon exposure to mammalian body temperature [24]. Alveolar
macrophages engulf Histoplasma Yeast, which proliferate intracellularly within phagosomes
and induce cell lysis to disseminate to new host cells [25]. The molecular mechanisms by
whichH. capsulatummodifies the macrophage phagosome, evades host immunity, and controls
host cell death remain poorly defined.

Recent work has established that macrophage lysis is driven by an effector protein, calcium bind-
ing protein 1 (Cbp1), that is an abundant yeast-specific secreted protein required for pulmonary
colonization [18,26–31]. Cbp1 is dispensable for proliferation within macrophages but is required
for H. capsulatum-driven macrophage lysis [31]. Notably, cbp1Δ yeast eventually exceed the in-
tracellular burden at which wild-type yeast induce lysis; thus, lysis is an active Cbp1-driven pro-
cess rather than a mere consequence of fungal burden [31]. Consistently, a Cbp1 ortholog
from the related macrophage-lytic fungus Paracoccidioides americana complements the macro-
phage lysis defect of cbp1Δ H. capsulatum [32], whereas Cbp1 orthologs from related nonlytic
fungi fail to complement [18].

Cbp1-dependent lysis occurs via apoptosis. Lysis is preceded by multiple hallmarks of apopto-
sis, including reduced levels of the negative apoptotic regulator phospho-Akt and induction of ini-
tiator caspase-8 and executioner caspases-3 and -7 [31,32]. Macrophages lacking Bax and Bak,
which oligomerize in the mitochondrial outer membrane to induce its permeabilization and initiate
the intrinsic apoptosis pathway, are partially protected fromH. capsulatum-mediated lysis [31]. In
contrast, macrophages lacking essential components of the necroptosis and pyroptosis path-
ways are not protected from lysis [31]. Transcriptional profiling revealed that macrophages in-
fected with H. capsulatum exhibit Cbp1-dependent transcriptional stress signatures [31]. This
stress response was not due to induction of the host unfolded protein response (UPR) [32],
which is frequently induced by intracellular pathogens [33]. Instead, H. capsulatum infection in-
duces eIF2α phosphorylation, upregulation of the stress-responsive transcription factor ATF4,
and induction of the ATF4 downstream targets CHOP and the TRIB3 [32], all of which are
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hallmarks of the integrated stress response (ISR). The ISR is activated by diverse cellular stresses,
including amino acid starvation, proteostasis defects, viral infection, and oxidative stress, and in-
duces apoptosis in situations where cells are unable to remediate those stresses [34]. Supporting
a model whereinH. capsulatum-driven apoptosis occurs via ISR induction, macrophages lacking
the ISR components CHOP or TRIB3 display reduced caspase-3/7 activation and reduced lysis
during H. capsulatum infection in vitro [32]. CHOP-deficient mice are less susceptible to
H. capsulatum infection, displaying reduced lung and spleen yeast burden and improved survival
compared to wild-typemice [32], suggesting that subversion of this pathway influences pathogen
fitness in vivo.

How Cpb1 triggers the ISR to promote host cell lysis is unclear. Cbp1 fractionates with cytosolic
markers and localizes to discrete puncta throughout the macrophage [18], raising the possibility
that it might directly modulate cytosolic factors to induce the ISR and drive apoptosis. Affinity
purification-mass spectrometry of Cpb1 identified an additional yeast-phase specific protein,
Yps-3, as an interacting partner, and co-elution of Yps-3 and Cbp1 during size exclusion chroma-
tography suggests that the two form an effector complex during infection [18]. While the function
of Yps-3 is unknown, yps-3Δ yeast induced delayed macrophage lysis in vitro and reduced viru-
lence in vivo [18], indicating that it is important for Cpb1-driven lysis.

While the precise mechanism by which Cbp1 triggers ISR activation remains to be elucidated,
these data indicate that H. capsulatum deploys a secreted effector to the host cell cytosol to ac-
tivate a stress response pathway and trigger apoptosis (Figure 1). Host cell death pathways
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Figure 1. Model for induction o
apoptosis by Histoplasma
capsulatum Cbp1. Phagosoma
H. capsulatum translocates Cbp1 and
Yps-3 protein effectors into the hos
cytosol through unknown mechanisms
These proteins form an effecto
complex that induces one or more
integrated stress response (ISR) triggers
to initiate eIF2α phosphorylation which
induces translation of the mRNA
encoding the transcription factor ATF4
ATF4 drives expression of the
transcription factor CHOP, which drives
expression of the pseudokinase TRIB3
TRIB3 inhibits phosphorylation o
Akt, thereby allowing oligomerization
of Bax and Bak in the mitochondria
outer membrane to induce
mitochondrial permeabilization and
activation of the intrinsic apoptosis
pathway. Additionally, through unknown
mechanisms, Cbp1 also appears to
induce apoptosis through caspase-8
activation. Abbreviations: GCN, genera
control nonderepressible; HRI, heme-
regulated inhibitor; PKR, protein kinase
RNA-activated.
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critically influence infection outcomes and are targets of numerous bacterial effector proteins that
either induce or inhibit them depending on the specific needs of the pathogen [35,36]. The
effectors Map and EspF from enteropathogenic Escherichia coli (EPEC) and related pathogens,
for example, directly interact with host mitochondria to disrupt mitochondrial membrane potential
and induce apoptosis [37–40]. Multiple bacterial effectors induce the UPR during infection, and a
subset of these influence cell death [33]. The Brucella abortus effector VceC, for example,
interacts with the endoplasmic reticulum (ER) chaperone BiP to induce ER stress, which, in
turn, promotes CHOP-dependent placental trophoblast cell death and abortion in a pregnant
mouse infection model [41,42]. Induction of host cell death is thus a conserved paradigm
among pathogens, and H. capsulatum has evidently evolved a secreted protein to target this
pathway through a novel mechanism.

Modulation of macrophage polarization by Cryptococcus neoformans Cpl1
The opportunistic pathogen C. neoformans is the most common cause of fungal meningitis and is
responsible for 112 000 annual deaths, representing nearly 20% of HIV/AIDS-related mortality
worldwide [43]. This yeast is globally distributed in the environment, and human infection begins
with inhalation of spores or desiccated yeast that initially colonize the lungs [44]. Immunocompetent
individuals readily control infection, but under conditions of immune compromise yeast can dissem-
inate to the central nervous system and causemeningitis that is uniformly fatal if untreated. One strik-
ing feature of cryptococcal infection is induction of a type 2 immune response characterized by
pulmonary eosinophilia, alternatively activated (M2) macrophages, and production of the cytokines
IL-4, IL-5, and IL-13 [45–49]. In vivo, type 1 immune responses are critical for control of crypto-
coccal infection whereas type 2 responses promote fungal survival [50], indicating that modulating
this immune axis is an important virulence attribute. C. neoformans is a facultative intracellular path-
ogen that can replicate within acidified macrophage phagolysosomes [51,52], and in vitro studies
indicate that M2-polarized macrophages are permissive for cryptococcal growth [53–56], providing
one possible mechanism underlying the benefits that type 2 immune responses confer to fungal
growth. Host recognition of fungal chitin is one determinant of type 2 immune response induction
[49], yet other fungal components that influence phagocyte polarization are unknown.

To address this question, our group sought to identify the cryptococcal determinants of type 2 im-
mune response induction in macrophages. Stimulating murine bone marrow-derived macro-
phages (BMDMs) with C. neoformans induced expression of the M2 macrophage marker
arginase-1 [19]. This response occurred even when yeast were separated from macrophages by
transwell inserts, implicating a soluble factor [19]. A screen of 4401 C. neoformans deletion strains
constructed in our laboratory found that the secreted protein Cpl1 is necessary for arginase-1
induction in BMDMs. Recombinant Cpl1 produced in the yeast Pichia pastoris was sufficient to
induce arginase-1, and costimulation with Cpl1 and IL-4 further boosted induction, indicating a po-
tential role for Cpl1 in amplifying M2 signals initiated through the IL-4 signaling pathway.

M2 gene expression programs are induced by the transcription factors STAT3 and/or STAT6
when cytokines, including IL-10 and IL-4, among others, engage their cognate receptors and ac-
tivate Janus kinases (JAKs) that phosphorylate the receptors’ cytosolic domains. This results in
recruitment, phosphorylation, dimerization, and nuclear translocation of STAT proteins to pro-
mote transcription of target genes [57,58]. Concordantly, recombinant Cpl1 induced STAT3
phosphorylation and enhanced IL-4-driven STAT6 phosphorylation in BMDMs [19]. These data
are reminiscent of an arginase-1 induction mechanism in Mycobacterium bovis Bacillus
Calmette-Guérin (BCG), which produces yet-unidentified microbial products that stimulate Toll-
like receptors (TLRs) 2 and 4 to induce secretion of IL-6, IL-10, and G-CSF, which in turn activate
STAT3 via autocrine/paracrine signaling [59,60]. Concordantly, induction of arginase-1 by Cpl1
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similarly required TLR4 (but not TLR2) and its downstream adaptor Myd88 [19]. While TLR4 ca-
nonically serves as a receptor for bacterial lipopolysaccharide (LPS) to induce inflammatory re-
sponses, the allergens ovalbumin and house dust mite antigen drive allergic inflammation
through TLR4 via small amounts of contaminating LPS [61–63]. Several experiments, including
the identification of a single amino acid substitution in Cpl1 that abrogates its activity, ruled out
LPS contamination as the source of TLR4-dependent arginase-1 induction [19]. These data sup-
port a model (Figure 2) in which Cpl1 signals through TLR4–Myd88 onmacrophages to induce ex-
pression of STAT3-activating cytokines. STAT3 upregulates IL-4Rα, which may contribute to
potentiation of arginase-1 induction through the IL-4-STAT6 pathway by virtue of increased recep-
tor availability. However, STAT3 also induces IL-4Rα-independent arginase-1 expression in vitro,
as STAT3 is necessary for Cpl1-induced arginase-1 in BMDMs whereas IL-4Rα is not [19].

This pathway influenced pathogenicity in vivo, as intranasally administered C. neoformans in-
duced arginase-1 expression in pulmonary interstitial macrophages in a Cpl1-dependent manner
[19]. Cryptococci preferentially associated with arginase-1-expressing interstitial macrophages
compared to non-expressing macrophages [19], suggesting that C. neoformans deploys Cpl1
to construct a replicative niche during infection. Concordantly, STAT6-deficient mice displayed
reduced arginase-1 induction in interstitial macrophages and reduced pulmonary fungal burden
[19]. Whereas wild-type C. neoformans achieved higher lung burdens in wild-type mice com-
pared to STAT6-deficient mice, presumably due to an inability to induce type 2 immune re-
sponses in the absence of STAT6, cpl1Δ yeast achieved similar lung burdens in wild-type and
STAT6-deficient mice [19]. This observation indicates that Cpl1 functions by modulating
STAT6-driven immune manipulation in vivo.

Co-opting STAT3 and/or STAT6 signaling to manipulate macrophage polarization is an emerging
mechanism observed in several host-pathogen systems [64,65]. Beyond the TLR2/4-dependent
mechanism utilized by M. bovis BCG mentioned above [59,60], Salmonella enterica serovar
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Figure 2. Model for manipulation of macrophage polarization by Cryptococcus neoformans Cpl1. Secreted
C. neoformans Cpl1 binds TLR4 on macrophages to induce STAT3-activating cytokines, which potentially include IL-6, IL-10
and G-CSF. In vitro, STAT3 activation drives upregulation of both Il4ra and Arg1, although the in vivo relevance of STAT3-
driven Arg1 induction remains unclear. STAT3 activation potentiates IL-4-driven STAT6 activation, presumably due to
increased IL-4Rα receptor availability, to enhance Arg1 expression and type 2 immune polarization. Abbreviations: G-CSF
granulocyte colony-stimulating factor; STAT, signal transducer and activator of transcription; TLR, Toll-like receptor.
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Typhimurium manipulates STAT signaling using the secreted effector SteE, which binds and
modulates the substrate specificity of the host kinase GSK3 to enable phosphorylation of the
noncanonical substrate STAT3 and thus bypass the typical receptor-based signaling mechanism
[66–69]. Similarly, the Bartonella henselae effector BepD promotes STAT3 phosphorylation by
co-opting a different noncanonical host kinase, c-Abl [70]. The T. gondii effector kinase ROP16
directly phosphorylates both STAT3 and STAT6 to induce M2 polarization [71–75]. Thus, macro-
phage polarization state is a host vulnerability commonly targeted by pathogen effectors. Strik-
ingly, C. neoformans, which is not thought to have coevolved with mammals, has converged
upon a similar strategy. The mechanism by which Cpl1 induces type 2 immune activation is dis-
tinct from SteE, BepD, and ROP16, which function intracellularly to induce noncanonical phos-
phorylation of STAT3 and/or STAT6. Instead, Cpl1 likely acts extracellularly, potentially by
direct binding and activation of TLR4. MD-2 is a coreceptor that binds LPS and complexes
with TLR4 to enable signaling [76–78], and the house dust mite antigen component Der p 2 struc-
turally mimics and replaces this protein to drive allergic inflammation [62,79–81]. Whether Cpl1
similarly mimics MD-2 or activates TLR4 signaling through an alternative mechanism is of key in-
terest to understand how an environmental fungal pathogen evolved the ability to manipulate
mammalian immune polarization states.

Inhibition of dendritic cell responses by Candida albicans Lip2
C. albicans is the most common cause of fungal infection, annually causing 134 million cases of
recurrent vulvovaginal candidiasis, 3.3 million cases of oral or esophageal candidiasis in HIV/AIDS
patients, and 750 000 cases of invasive candidiasis [2]. In contrast to the environmental fungi
H. capsulatum and C. neoformans, C. albicans is a mammalian commensal that stably colo-
nizes the gut, skin, and genitourinary tract and can benefit the host by enhancing immunity
against a subset of bacterial and fungal pathogens [82]. Candidiasis typically occurs under con-
ditions of gut dysbiosis, mucosal barrier breach, or immune suppression and ranges from super-
ficial infection of mucosal tissues (mucocutaneous candidiasis) to life-threatening disseminated
disease [83,84]. C. albicans undergoes morphological transitions between yeast, a form typically
associated with commensalism, and hyphae, which are associated with tissue invasion and dis-
ease [85,86]. Despite the importance of the yeast-to-hypha switch, systematic screens found
that nearly half of C. albicansmutants defective in fitness in the host are dispensable for this pro-
cess [87], suggesting that numerous virulence mechanisms remain uncharacterized.

Recent work found that a secreted C. albicans lipase, Lip2, is required for kidney colonization in a
bloodstream infection model but dispensable for hyphal morphogenesis [20]. Yeast lacking LIP2
induced higher Il17a expression in infected renal tissue compared to wild-type yeast [20], indicat-
ing a potential role for Lip2 in suppressing IL-17 signaling. IL-17 is primarily secreted by lympho-
cytes and promotes immunity to extracellular bacteria and fungi by inducing target cells to
produce antimicrobial peptides, proinflammatory cytokines, and neutrophil-recruiting
chemokines [88,89]. IL-17 signaling has well-established roles in defending against both muco-
cutaneous and systemic candidiasis in mice [83,90,91], whereas human patients with genetic de-
ficiencies in the IL-17 pathway or undergoing anti-IL-17 therapeutic treatment display increased
susceptibility to mucocutaneous candidiasis but not disseminated disease [92–95]. Growth and
virulence of the lip2Δ mutant are completely restored in mice lacking IL-17A and IL-17F, the two
IL-17-family cytokines accounting for most known IL-17 functions, indicating that C. albicans
Lip2 suppresses the mouse IL-17 response during systemic infection in mice [20].

γδ T cells are the primary source of IL-17 in lip2Δ-infected kidneys [20]. IL-17 production by lym-
phocytes is typically induced by macrophage- or dendritic cell (DC)-derived IL-23, suggesting the
hypothesis that Lip2 acts on these upstreammyeloid cells. Indeed, wild-typeC. albicans infection
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drove Il23 upregulation in renal DCs in vivo, and this response was exacerbated in infections with
lip2Δ yeast [20]. Bonemarrow-derived DCs (BMDCs) secreted IL-23A in response to lip2Δ yeast,
but not wild-type yeast, in a TLR2- and TLR4-dependent manner [20]. Both lip2Δ-induced IL-23A
and suppression of this response by wild-type yeast occurred when yeast were separated from
BMDCs by transwell inserts, indicating that soluble factors mediate both DC activation and
suppression [20]. Exogenous palmitic acid, but not stearic or linoleic acids, suppressed
lip2Δ-induced IL-23A production in BMDCs, and Lip2 catalytic activity is necessary for its ac-
tivity [20]. This suggests that Lip2-derived palmitic acid, presumably produced from triglyceride
hydrolysis, drives Lip2-dependent phenotypes.

These data support a model wherein host DCs sense soluble C. albicans PAMPS via TLR2 and
TLR4 and, under normal circumstances, secrete IL-23 to activate γδ T cells, which then secrete
IL-17 to activate antifungal responses (Figure 3). Secreted Lip2 counteracts this circuit by pro-
ducing palmitic acid to inhibit DC activation. How palmitic acid acts is unknown. One model is
Candida albicans
hyphae

Soluble
PAMPs

Dendritic
cell

TLR2
TLR4

γδ T cell

IL-23A

IL-17A

Lip2

Fungal 
restriction

Palmitic 
acid

Triglycerides

IL-23R/
1L-12Rβ1

PAMP secretion?
PAMP sensing?
DC signaling?

TrendsTrends inin MicrobiologyMicrobiology

Figure 3. Model for suppression o
dendritic cell responses by
Candida albicans Lip2. Secreted
C. albicans Lip2 produces palmitic
acid, presumably by triglyceride
hydrolysis, to inhibit activation o
dendritic cells (DCs) by soluble funga
pathogen-associated molecular patterns
(PAMPs). It remains unclear whethe
palmitic acid acts via (i) inhibition o
PAMP secretion by C. albicans
(ii) inhibition of PAMP sensing by DCs
or (iii) disruption of DC signaling. In the
absence of Lip2, DCs sense funga
PAMPs and secrete IL-23A, which
induces γδ T cells to secrete IL-17 and
suppress fungal growth.

Trend
f

f
l

r
f
;
;

l

s in Microbiology, Month 2023, Vol. xx, No. xx 7

CellPress logo


Trends in Microbiology
that it blocks binding of yeast PAMPs to TLR2 and TLR4, thereby inhibiting activation. Alterna-
tively, palmitic acid might induce anti-inflammatory responses that counteract TLR2/4-derived
activation signals. Another possibility is that palmitic acid acts on C. albicans to prevent PAMP
production. Notably, although lipases as protein effectors have been observed in other pathogen
classes,C. albicans Lip2 seems to function in a manner that is mechanistically distinct. For example,
while the secreted lipase Geh from the Gram-positive bacterial pathogen Staphylococcus aureus
also suppresses TLR2-dependent innate sensing, it does so by cleaving acyl chains from bacterial
lipoproteins that are TLR2 agonists, thereby preventing host recognition of these important PAMPs
[96]. Fusarium graminearum, a fungal pathogen of wheat, secretes a lipase, Fgl1, that cleaves lipids
to produce the free fatty acids linoleic acid and α-linoleic acid [97]. These fatty acids inhibit the en-
zyme that synthesizes the β-(1,3)-glucan polymer callose [97], which the plant deposits to inhibit
pathogen invasion. Thus, whereas Geh directly modifies microbial PAMPs to inhibit innate immune
sensing and Fgl1 inhibits downstream immune effector functions through its fatty acid products,
Lip2 utilizes its product palmitic acid to disrupt upstream innate sensing.

Redirection of phagosome trafficking by Aspergillus fumigatus HscA
A. fumigatus is an environmental filamentous fungus that causes a range of clinical diseases in-
cluding 4.8 million annual cases of allergic bronchopulmonary aspergillosis (ABPA), 3 million an-
nual cases of chronic pulmonary aspergillosis (CPA), and 300 000 annual cases of invasive
aspergillosis (IA) [2]. Human infection begins with inhalation of conidia. Neutrophils and alveolar
macrophages play a central role in clearing these fungal cells from the airways, and the ability of
conidia to evade phagocytic killing mechanisms is an important determinant of infection out-
comes [98]. LC3-associated phagocytosis (LAP) is a pathway by which PAMP sensing promotes
phagosome maturation and killing of ingested pathogens in a manner dependent on a subset of
autophagy components and the NADPH oxidase complex [99,100]. LAP is important for killing
phagocytosed A. fumigatus spores in experimental systems [101], and previous work showed
that the conidial cell wall pigment DHN-melanin inhibits LAP by depleting intraphagosomal
calcium, resulting in reduced NADPH oxidase recruitment to the phagosome membrane
[102,103]. Despite a major role for DHN-melanin in evasion of killing by phagocytes, some
nonmelanized conidia were nonetheless able to survive inside phagosomes [102,104], suggest-
ing that A. fumigatus encodes additional mechanisms to subvert this important host defense.

To identify fungal proteins that interact with host cells, a biotinylation approach was employed to
label surface-exposed A. fumigatus proteins and to identify those that bound cultured lung epi-
thelial cells [21]. This identified the Hsp70-family chaperone HscA as a candidate interactor,
and indeed recombinant HscA, but not recombinant A. fumigatus Hsp70, bound to cells of mul-
tiple human and mouse epithelial cell lines [21]. Conidia lacking HscA displayed two phenotypes.
First, ΔhscA conidia bound host cells to a lesser extent than wild-type conidia, suggesting a role
in attachment [21]. Second, after internalization by host cells, more ΔhscA conidia stained posi-
tive for phagosome maturation markers compared to wild-type conidia, suggesting that HscA
plays a role in preventing phagosome maturation [21]. Notably, both phenotypes could be res-
cued by addition of recombinant HscA but not recombinant Hsp70. Furthermore, HscA-coated
latex beads displayed reduced association with the phagosome maturation marker Rab7 com-
pared to BSA-coated bead controls [21], suggesting that HscA is sufficient to inhibit phagosome
maturation in the absence of other fungal components.

Unbiased proteomics identified human p11, also called S100A10, as an HscA binding partner
[21]. p11 is a multifunctional protein that forms a heterotetrameric complex with the
phospholipid-binding protein annexin A2 (AnxA2). This protein complex has been localized
both intracellularly to the cytosolic face of endosomes and the plasma membrane, as well as
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extracellularly to the plasma membrane, and it influences a diverse array of cellular processes in-
cluding endosome trafficking, transmembrane protein localization, actin dynamics, tight junction
maintenance, and plasmin activation [105–108]. Validating an HscA–p11 interaction, both p11
and AnxA2 coprecipitated with HscA-GFP, and recombinant HscA could not bind host cells lack-
ing p11 [21]. Deletion of p11 both reduced attachment of wild-type conidia and increased the as-
sociation of internalized conidia with phagosome maturation markers [21], confirming a role for
p11 in the attachment and inhibition of phagosome maturation phenotypes attributed to HscA.
Phagosomes lacking maturation markers were instead shunted to a recycling pathway, as
wild-type conidia were associated with recycling endosome markers (e.g., Rab11) to a greater
extent than HscA-deficient conidia [21]. Concordantly, internalized HscA-coated beads stained
positive for recycling endosome markers whereas Hsp70-coated beads did not [21]. These
data support a model in which HscA binds human p11 to prevent phagosome maturation and
shunt phagosomes to a recycling pathway (Figure 4).

Functionally, deleting hscA from conidia or p11 from host cells reduced the percentage of germi-
nated conidia within phagosomes [21], suggesting a role for modulation of phagosome trafficking
in fungal development during infection. Additionally, deletion of hscA reduced exocytosis of co-
nidia from host cells [21]. Screening for human p11 single-nucleotide polymorphisms (SNPs) as-
sociated with risk of invasive pulmonary aspergillosis (IPA) in a cohort of hematopoietic stem cell
transplant recipients and their donors revealed one SNP in the first intron of p11 in donors
associated with significantly reduced IPA risk [21]. Engineering this protective SNP into cultured
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Figure 4. Model for manipulation
of phagosome trafficking by
Aspergillus fumigatus HscA. HscA
on the surface of phagosoma
A. fumigatus conidia recruits p11–AnxA2
heterotetramers to the cytosolic face o
the phagosomal membrane through an
unknown mechanism. This prevents
accumulation of the late endosome
marker Rab7 and allows recruitment o
the recycling endosome marker Rab11
which promotes fungal survival by
promoting exocytosis or germination
within the phagosome. In the absence
of HscA, p11 and AnxA2 are no
recruited, and Rab7 accumulates on the
phagosomal membrane to drive it to an
antifungal degradative pathway. Note
that the topology of HscA-p11–AnxA2
interactions remains to be elucidated
and there is likely a population o
lumenal p11–AnxA2 (not shown) arising
from HscA interactions with surface
p11–AnxA2 during attachment and
engulfment. The relative contributions o
cytosolic versus lumenal p11-AnxA2 to
phagosome redirection are unclear.
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Outstanding questions
How does H. capsulatum Cbp1
access the host cytosol?

Is Cbp1 sufficient to initiate the ISR and
apoptosis in the absence of other
Histoplasma machinery?

How does Cbp1 initiate the ISR?

Does C. neoformans Cpl1 directly
interact with TLR4?

What is the functional consequence
Cpl1-mediated manipulation of inter-
stitial macrophage polarization during
in vivo infection?

What is the mechanism by which Lip2-
produced palmitic acid suppresses
recognition of C. albicans by dendritic
cells?

How is A. fumigatus HscA directed to
the conidial surface?

How does HscA, which is thought to
localize on the conidial surface in the
phagosome lumen, access p11,
which likely resides in the cytosol?
epithelial cells reduced the percentage of conidia associated with phagosome maturation
markers and increased the percentage associated with recycling endosome markers [21].

Destruction by the phagolysosome is one of the most common challenges to infection that
successful pathogens must overcome, and there are numerous microbial effectors dedicated
to escaping the phagolysosome or preventing its maturation [109]. Effectors modulating
phagosome trafficking act through diverse biochemical mechanisms but tend to functionally con-
verge on modifying critical determinants of phagosome identity, such as Rab GTPases and
phosphoinositides, to construct an intraphagosomal environment that facilitates pathogen sur-
vival [109]. A. fumigatus HscA functions similarly by preventing the accumulation of phagosome
maturation markers and promoting the accumulation of recycling endosome markers. The
HscA-interacting partners p11 and AnxA2 influence multiple membrane-related processes in
the cell, but how they contribute to phagosome redirection is unclear. The topology of the
HscA-p11 interaction is of particular importance to elucidate, as the current data suggest some-
what of a paradoxical model. During internalization of conidia by host cells, HscA on the conidial
surface likely binds extracellular p11 on the plasma membrane. Phagocytosis would presumably
internalize extracellular p11 and AnxA2 to the phagosome lumen, but it seems unlikely that lu-
menal HscA-p11 interactions could coordinate Rab turnover and phagosome redirection. Cyto-
solic p11-AnxA2 more probably carries out these functions, but it is then unclear how lumenal
HscA interfaces with these factors across the phagosome membrane.

Like the effector targets described for other fungal pathogens above, there are multiple examples
of infectious microbes coopting p11 and AnxA2. AnxA2 is reported to interact with the S.
Typhimurium effectors SopD2 and PipB2 and may be required for the SopD2-dependent posi-
tioning of the Salmonella-containing vacuole near the host nucleus [110]. Paralleling the dual
roles for p11-AnxA2 in both attachment and phagosome trafficking during A. fumigatus infection,
this complex is also recruited to the site of S. Typhimurium invasion in a manner partially depen-
dent on the secreted phosphatase SopB to promote actin-dependent membrane ruffling and
bacterial internalization [111]. The effector EspL2 from enterohemorrhagic E. coli (EHEC) binds
AnxA2 and activates its actin cross-linking activity [112], and extracellular AnxA2 has been impli-
cated as a host cell attachment factor for Rickettsia australis and S. aureus [113]. Additionally,
p11 and AnxA2 are critical to the life cycles of multiple viruses, with reported roles in attachment,
entry, replication, virion assembly, and release [114]. Thus, diverse pathogens target this protein
complex to promote their infectious lifestyles.

Concluding remarks and future perspectives
Microbial pathogens utilize secreted effector proteins to counteract host barriers to infection.
While few such proteins had been identified in human fungal pathogens, the recent findings re-
viewed here make it clear such proteins are widespread. While the fungal effectors described
to date have diverse biochemical functions and host target pathways, they nonetheless modulate
key host pathways that are often subverted by other classes of pathogens. Because the fungal
pathogens described here are primarily commensals or environmental saprophytes, the sophis-
ticated mechanisms by which they subvert these critical host pathways could be viewed as par-
adoxical. However, many bacterial pathogens are also found in the environment and lack a
known animal reservoir (e.g., Pseudomonas aeruginosa and Legionella pneumophila). It has
been proposed that the predation by eukaryotes in the environment drove the evolution of path-
ogenicity in these systems [115,116], and similar hypotheses have been made for human fungal
pathogens [117]. Additionally, in cases of opportunistic fungi, such as C. neoformans and
A. fumigatus, we speculate that proteins involved purely in these organisms’ environmental life-
styles might occasionally, by chance, encode functions that happen to promote survival during
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infection. C. neoformans Cpl1, for example, also promotes capsule assembly [118] and is part of
a family of five secreted proteins that are developmentally regulated and are thought to influence
fungal morphogenesis and stress tolerance in different environmental conditions [119].
A. fumigatus HscA is an Hsp70-family chaperone which might have evolved for any number of
functions unrelated to pathogenesis. These proteins’ roles in host colonization may be examples
of exaptation, in which a characteristic that evolved in one environment, with or without a spe-
cific function, subsequently promotes fitness in a new environment [120]. Rather than anomalies,
effectors that arise through exaptation might be an underappreciated source of raw materials for
the evolution of pathogenesis from environmental microbes. While horizontal gene transfer, espe-
cially in bacteria, is undoubtedly a major mechanism for the acquisition of host-modulatory func-
tions, retooling existing proteins that encode effector functions by chance could be an alternative
strategy for a saprophyte to establish amammalian host as a new niche. Regardless of the under-
lying forces, the recent work makes clear that secreted fungal effectors have evolved to enable
infection of mammals via manipulation of key pathways including apoptosis, myeloid cell polariza-
tion, Toll-like receptor signaling, and phagosome activity. We imagine that they represent the tip
of an iceberg whose depths will soon be revealed (see Outstanding questions).
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